Unraveling the Plasma Physics of Galactic Jet Formation via Laboratory Experiments

Scott C. Hsu (P-24)

In collaboration with Xianzhu Tang (T-15) and Paul Bellan (Caltech)

Outline:

- Galactic jet introduction
- Experimental basis for simulating jet formation
- Recent experimental results
- Proposed new experiments

Galactic Jets Have Cosmological Impact

~10% of gravitational energy released from SMBH formation → magnetic energy transported by jet to extra-galactic scales

Kronberg et al.; Colgate et al.

Galactic Jet Formation Requires Plasma Physics Description

Magnetic field twisted by ionized rotating accretion disk

MHD models

(Lovelace, Blandford, Lynden-Bell & disciples)

Nonlinear plasma physics:

- Collimation dependence on disk rotation
- Instability onset/saturation
- Flux conversion dynamo
- Energy/momentum transfer between jet and background

Plasma Physics of Disk-Jet System Simulated Using Coaxial Electrodes

Disk coronal plasma obeys ideal MHD Ohm's law:

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = 0 \rightarrow E_{\mathbf{R}} = -V_{\theta} B_{\mathbf{Z}} + V_{\mathbf{Z}} B_{\theta}$$
applied voltage (lab) Keplerian rotation (disk)

Field-aligned current twists up background magnetic field and injects magnetic helicity $K = \int \mathbf{A} \cdot \mathbf{B} \, d^3 \mathbf{x}$ [flux²]

Astrophysically Relevant Plasma Conditions Accessible in Laboratory Experiments

- Large magnetic Reynold's number → MHD regime (Alfven dynamics much faster than resistive diffusion)
- Very low β plasma (characteristic of disk coronae; plasma tries to "relax" toward force-free state)
- Magnetic helicity injection rate (rotation) scalable from sub to super-Alfvenic

Recent Experiments

(in collaboration with P. Bellan, Caltech)

Jet Formation By Helicity Injection Demonstrated in Recent Experiments

coaxial electrodes

magnetic collimation (movie)

Plasma Column Has Helical Magnetic Field (Screw Pinch)

Jet Becomes Kinked When MHD Instability Threshold Satisfied

"Kruskal-Shafranov limit"

instability occurs when $2\pi RB_7/LB_0 < 1$

Kink instability (movie)

Hsu and Bellan, *MNRAS* **334**, 257 (2002) Hsu and Bellan, *PRL* **90**, 215002 (2003)

Kink Provides Flux Conversion "Dynamo" Leading to Relaxed "Spheromak"

- Kink converts toroidal to poloidal flux
- Measured B-profiles approach relaxed spheromak state

$$B_{\rm Z} \sim J_{\rm O}(\lambda R)$$

$$B_{\phi} \sim J_1(\lambda R)$$

Hsu and Bellan, PRL 90, 215002 (2003)

Are radio lobes giant spheromaks?

Proposed New Experiments

(in collaboration with X. Tang, T-15)

Proposed Experiments Will Have Several Key New Capabilities

- Helicity injection independent of plasma formation → allows very low β to be maintained
- 3rd concentric electrode \rightarrow more control over E_R profile to give Keplerian rotation profile
- Volumetric space and time-resolved measurements of B, n, T, V
- Long enough time duration to allow >20 rotations (can collimation survive curse of spheromak?)

Key Dimensionless Parameters Identified

• Helicity injection rate $\Leftrightarrow E \times B$ rotation

$$V_{\rm m} = V_{E\times B}/V_{\rm A}$$
$$\sim (E/B)/(B/\rho^{1/2}) \sim \rho^{1/2} V_{\rm applied}/B^2$$

Scan $V_{\rm m}$ from 0.1 (sub-Alfvenic) to 10 (super-Alfvenic)

Instability threshold

$$V_{\rm s} = V_{\rm applied}/\langle V_{\rm drop}\rangle$$
 where $\langle V_{\rm drop}\rangle \sim \eta B/\mu_0$
Scan $V_{\rm s}$ from 0.1 (stable) to 10 (unstable)

X. Tang et al., BAPS (2002, 2003) and Phys. Plasmas (2004).

New Experiments Will Be Done on State-of-the-Art Plasma User Facility at UCLA

LAPD: Large Plasma Device

 $T_{\rm e} \sim 5 \text{ eV}$

 $n \sim 10^{12} \text{ cm}^{-3}$

 $B \sim 1 \text{ kG}$

5 ms duration repeated at 1 Hz

We Will Install Concentric Ring Electrodes with Coil-Generated "Bias Flux" into LAPD

applied voltage between electrodes generated by switched capacitor banks

Research Plan

- Collimation dependence on helicity injection rate (scan $V_{\rm m} \sim \rho^{1/2} \ V_{\rm inj}/B_0^2$)
- Collimation dependence on jet stability (scan $V_{\rm s} \sim V_{\rm inj} q_0/\eta B_0$)
- Study limits on jet magnetic energy and helicity content
- Magnetic energy dissipation and angular momentum transfer between jet and background

Example of Dataset We Will Obtain

B data (movie)

Courtesy of Prof. Walter Gekelman, UCLA

Summary

- Nonlinear plasma physics of jet formation need experimental tests
- Key dimensionless parameters can be reproduced in the lab
- Jet formation via helicity injection demonstrated on recent experiments
- New experiments have been designed for user facility LAPD at UCLA
- Experiments will address key open questions on the nonlinear plasma physics